If it's not what You are looking for type in the equation solver your own equation and let us solve it.
0.5x^2+2x-50=0
a = 0.5; b = 2; c = -50;
Δ = b2-4ac
Δ = 22-4·0.5·(-50)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{26}}{2*0.5}=\frac{-2-2\sqrt{26}}{1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{26}}{2*0.5}=\frac{-2+2\sqrt{26}}{1} $
| 7-3=4n+12 | | 4(x+1/2)=3(2x-1/3) | | 6x+10=4x+25 | | 2x=−2 | | 2x+1/3=6x-4/2 | | 16x-12=120 | | x*x+13=29 | | 3/4x^2-5x+9=0 | | 7x-1=3x15 | | 8•x=56 | | 48-z=30 | | 3(x-10)/4=4x-5 | | 7x−4=5x+10 | | 2/x-2+3/x-1=3/2 | | -3x+6=9x+11 | | 3^2x-303^x+81=0 | | 4(x-)=16 | | 21x-11=0 | | x-1/6x+11=x-1/5x+3 | | 6x+11+5x+3=0 | | 0.82y+y=2 | | (√2/3)y+y=2 | | (√2/3y)+y=2 | | 5(x-2)=6x-2(x+3) | | x+X/3=44 | | 6x−8=5x+14 | | 6x−10=−4 | | 3x+16)=9x+4 | | 35y-10=7 | | 45/(p+3)=-9 | | -26=3x=-39+6x | | 22x=64 |